If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-17.16t-13=0
a = 4.9; b = -17.16; c = -13;
Δ = b2-4ac
Δ = -17.162-4·4.9·(-13)
Δ = 549.2656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17.16)-\sqrt{549.2656}}{2*4.9}=\frac{17.16-\sqrt{549.2656}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17.16)+\sqrt{549.2656}}{2*4.9}=\frac{17.16+\sqrt{549.2656}}{9.8} $
| x=2+x=22 | | 400+75f=1000-25f | | 13=13g-2(-5+g) | | X+16=-5x+4 | | -9u+u+5u+-12=12 | | (6x-5)+x=180 | | 10+8v=38 | | 0.3(100)+0.25x=0.2(100)+0.3x | | 11=1.5(9x+2) | | 136=2x-18 | | 5(5-7k)=-255 | | 1+5a-6=-15 | | 90+17+c=180 | | -4.52=3n+1.48 | | 6(-4+5n)=-24+8n | | 2(2x+3)=3(2x+6) | | -3.2-x=-19.2 | | -6(3x-3)=-18x-18 | | -6x-5+5=-2-7x | | 7+16y=11.25 | | 3j+-9=-57-3j | | 5x+3=11x+7 | | 3x-9+x=5x+7 | | 2x-15+11=180 | | 2(3n+2)=4(15+1) | | -0.5x+0.2=0.12 | | 2-3x=7-2(2-5x) | | -2+w/5=18 | | x^2-2x-62=x+8 | | 2a-a+2=9 | | 6b+4=-7-b | | 1/2x-1=-1/4 |